Are you interested in Microfluidic Cell Culture? We interview the Researcher Iñaki Ochoa

Posted By J. Garcia / cell culture, microfluidics / biotechnology, cell culture, microfluidic / No hay comentarios

 

It has been our great pleasure to interview Iñaki Ochoa, head of the Research Group with which we collaborate to develop the latest technologies in Cell Culture.

It is a group specialized in oncology; that is, they perform treatments for cancer. The group is known for having developed the most advanced model in the world of glioblastoma; one of the most dangerous cancers.

 

Let´s see what he has to tell us!

 

microLIQUID: Problems encountered with conventional Cell Culture methods, and the solutions offered by Microfluidic Cell Culture:

Iñaki Ochoa: The conventional Cell Culture methods that are used today are based mainly on two-dimensional cultures performed on plastic plates. The cells are placed or “planted” at the bottom of these plates. To provide them with nutrients, a liquid, or culture medium, is added on top of them.  This liquid provides the necessary nutrients. These plates require a gaseous connection to the outside in order to access the essential gases (such as oxygen) to maintain viable cells. As can easily be concluded, our body is not two-dimensional, nor do our cells live in isolatiom from each other. Under current culture conditions, the cells lack an environment similar to that of our body. Cells in the laboratory do not grow under three-dimensional conditions, they have an excess of essential elements (nutrients, oxygen, etc.) and, in addition, they lack interaction with other cell types for in vivo communication.

 

microLIQUID: Advantage of the Microfluidic Cell Culture:

Read More

Precise Replica Moulding

Posted By J. Garcia / microfluidics, Technology Blog / biotechnology, microfluidics, microLIQUID, mould / No hay comentarios

 

 

microfluidic-moldingThe use of durable replica moulds with high-feature resolution has been proposed as an inexpensive and convenient route for the manufacture of microstructured materials. A simple and fast duplication method, it involves the use of a master mould to create durable polymer replicas, using polydimethylsiloxane (PDMS). The application of PDMS offers numerous advantages due to its intrinsic properties such as its biocompatibility, affordable price, transparency (240nm-1100nm) as well as its low autofluorescence. The replica process enables fast and easy manufacturing since it can be covalently stuck to a glass substrate, using plasma treatment to form sealed microfluidic devices. The replica process is clean and precise, while multiple replications can be obtained from one master. This dramatically decreases both the expenditure and the time required to create specific patterns that need to be used consistently in the creation of various devices.

 

 

High Precision SU-8 Master Mould for Microfluidic Device Replication

microLIQUID manufactures polymer SU-8 master moulds on silicon wafers, which are widely used to produce microfluidic disposables in the development and prototyping stage. In addition, we generate series of PDMS copies with excellent reproducibility and precision. microLIQUID offers high resolution moulds with a standard deviation of under 2%. microLIQUID is working in applications such as droplet generation for PCR diagnostics, single-cell analysis and high throughput screening among others. The moulds are highly reusable since we offer several treatments to increase the service life of the mould. This replica method will help you choose the optimum design for your product prior to scaling up to mass production. Indeed, more than 50 companies all over the world have already done so.

Read More

where are we?