Microfluidics in Medica 2016: Microliquid in the Health care industry

Posted By Borja Barredo / News / microfluidic chip, microfluidic companies, microfluidics / No hay comentarios



microLIQUID in MEDICA 2016

microLIQUID in MEDICA 2016 : exploring opportunities in Health Care industry

Microfluidic Event in Germany

During three days in November, from 14 to 17 November, we have been part of the most important trade fair for In-Patient and out-patient Medicine in the city of Düsseldorf (Germany), MEDICA 2016.

Medica is the most attractive fair for the people who are working in the Health Care industry. There have been more than 130,000 visitors from over 120 countries, having the chance to take part in numerous special events, such as international conferences and forums.

Moreover Medica is the focus of the worldwide medical trade, and it has the largest and most comprehensive product display.

Microfluidics is a technology which has a big presence in the fair, as many of the solutions offered to the market in Diagnostics – IVD Market are based on it.

The trade fair we have been attending has more than 5.000 exhibitors from all around the world, with more than 19 halls on the exhibit area.

Furthermore, it is important to know that more than 500 of the exhibitors where from the United States of America and Canada.

Two members of our company have been attending the Medica world trade fair, having different meetings.  As visitors, you are able to contact many companies in the Medical Device and Diagnostics in order to expand our business portfolio.

Read More

Microfluidics Application: What is Organ on a Chip?

Posted By Borja Barredo / Technology Blog / microfluidic chip, microfluidics, organ on a chip / No hay comentarios

Organ on a Chip

ORGAN ON A CHIP for the study of human phisiology

Microfluidics Application: Organ-on-a-Chip

Organ on a Chip is a type of artificial organ which simulates the activities, mechanics and physiological response of the entire organs and organ systems.

Moreover, it is a flexible polymer multi-channel 3-D microfluidic cell culture chip, and the union of lab -on-chips and cell biology has enabled the study of human physiology in an organic-specific context.

These types of chips are used to potentially accelerate drug discovery, reduce drug-development costs, to create a future of personalized medicine to treat a wide variety of diseases, such as cancer, pulmonary thrombosis and asthma.

Furthermore, these type of microchips are much more realistic models of the human body comparing with the flat layers of cells grown in petri dishes.





Read More

Microfluidics Application: What is Cell Sorting?

Posted By Borja Barredo / Technology Blog / cell sorting, microfluidic chip, microfluidics / No hay comentarios

Cell Sorting and Microfluidics

Cell sorting consists on separating cell according to their properties

Microfluidics Application: Cell Sorting

Cell sorting consists on separating cell according to their properties.

These properties are of different types, such as intracellular (inside the cell) or extracellular (outside the cell).

The properties worked in this type of separations include DNA, RNA, protein molecule, morphology, size or shape.

Furthermore, there are some different types of cell sorting.

There are two main types when cell sorting. As said before, these techniques, that are called flow cytometry and magnetic bead separation, are used to separate cells into different population.

The biggest difference between these two methods is that flow cytometry sorts cells one by one, while magnetic bead separation works on all cells at once. Although both methods are efficient, it is better to know their relative strenths and weaknesses to choose among them.

The importance of cell sorting:

As known, cells are basic structural and functional unit of all living organism, that is why the ability to isolate and sort different cell types within organs and tissues has led to many established principles in medicine and physiology.
On one hand, and taking into account the research field, the ability to separate cells into distinct populations enables the study of individual cell types isolated form the heterogeneous population without contamination from other cell types. This technology enables research in areas as varied as regenerative medicine, cancer therapy and HIV pathogenesis.
Moreover, in terms of clinical usage, it is possible to introduce the enriched cell populations to a patient who has a clinical need for those cells, and it also enables the enumeration of cells within an individual’s blood system ad can help on the repopulation of the immune system.






Read More

Microfluidics Application: Advantages of Molecularly Imprinted Polymer – MIPs

Posted By Borja Barredo / Technology Blog / microfluidic chip, microfluidics, Molecularly Imprinted Polymer / No hay comentarios

Molecularly Imprinted Polymer – MIPs and Microfluidics

Molecularly Imprinted Polymer – MIPs and Microfluidics: Benefits of both technologies

Molecularly Imprinted Polymer – MIPs and Microfluidics

As mentioned before, using MIPs have several advantages, but if MIPs and microfluidics are worked together, they have even more positive points.

To start with, the materials used in microfluidic platforms are more or less inert, transparent and, moreover, they are not toxic.

This allows to work with all kinds of analytical techniques.
In addition, valves can be implemented in the microfluidic device, and this action allows the directed flows into certain areas of the chip.

Furthermore, the main advantage of inserting MIPs into microfluidic devices is that minuscule channels reduce diffusion form a solution to the imprinted surface.

This reduction brings a significant reduction of response timers for sensors or an increase of throughput for separations.

Read More

Microfluidics Application: Molecularly Imprinted Polymer – MIPs

Posted By Borja Barredo / Technology Blog / microfluidic chip, microfluidics, Molecularly Imprinted Polymer / No hay comentarios

Molecularly Imprinted Polymer – MIPs Applications

Molecularly Imprinted Polymer – MIPs Applications

MIPs Applications and Microfluidics

The main applications of MIP’s are in the area of sensors and separation.

Moreover, as MIPs are fast and cost-effective, it is mostly used in the fields of chemistry, biology and engineering.

Due to the specific binding site created in a MIP this technique is showing promise in analytical chemistry as a useful method for solid phase extraction.

According to the effectiveness of the MIPs and as it is a cheaper and easier production of antibody/enzymes, it is nowadays used in the medical research and application, applications such as Controlled release drugs, drug monitoring devices and mimetic biological receptor .
Speaking about the advantages of MIP’s, they offer many advantages over protein binding sites. Proteins are difficult and expensive to purify, denature and are difficult to immobilize for reuse.

Synthetic polymers are cheap, easy to synthesize, and allow the elaboration of synthetic side chains to be incorporated.







Read More

Microfluidics Application: What is a Molecularly Imprinted Polymer – MIPs?

Posted By Borja Barredo / Technology Blog / microfluidic chip, microfluidics, polymer / No hay comentarios


Molecularly Imprinted Polymer – MIPs

Molecularly Imprinted Polymer – MIPs

Microfluidic Application: Molecularly Imprinted Polymer – MIPs

In a Molecular imprinting process, functional monomers are selected to allow self-assemble around a template molecule and subsequently polymerized in the presence of a cross linker.

Together with it, molecularly imprinted polymer (MIP) is a polymer that has a «memory» of the shape and the functional groups of a template molecule.

The aim of this material is to recognize selectively the template molecule used in the imprinting process, and to act as an antibody. High molecular recognition properties can be achieved with these MIPs for a variety of molecules.
Saying it in a simpler way, Molecular imprinting is making an artificial tiny lock for a specific molecule that serves as miniature key. In addition, there are two main ways and methods for creating these molecularly imprinted Polymers:
1. Self-Assembly:
This method is a powerful technique to create nano-structures using predesigned compositions. It is based on the combination of compound molecules by different forces. Moreover, it allows the molecular interactions to form the cross-linked polymer
2. Covalently linking:
This second method which is used, as well as the first method, for the MIP’s formation, involves covalently linking the imprint molecule and the monomer. Once the polymerization is done, the monomer is separated from the template molecule.

Read More

Microfluidics Application: Neuron Devices

Posted By Borja Barredo / Technology Blog / microfluidic chip, microfluidics, neuron / No hay comentarios


Neuron devices provide compartmentalization, fluidic isolation and improved cellular organization over traditionally neuronal cell cultures.

Microfluidics for Neuron Devices 

Offering a wide selection of neuron device product arrays, our products allow axons and dendrites to be fluidically isolated from cell bodies.

The neuron devices provide compartmentalization, fluidic isolation and improved cellular organization over traditionally chaotic neuronal cell cultures.

Are you thinking about working on microfluidics from the Neuroscience field? Do you need any help in any step of the process?

Different types of products:

A. Products suitable for cultures which do not grow long processes.

B.  Tools that can separate cell bodies from axons

C.  Platforms for long term experiments ensuring axonal isolation

D.  Culture  neurons and other combinations of cells

E. Perfusion chips

Detail of a neuron device microfluidic Chip

Detail of a neuron device microfluidic Chip



Read More

Microfluidic Event in BIOARABA: A new workshop to expand our work in Microfluidics

Posted By Borja Barredo / News / microfluidic, microfluidic chip, microfluidics / No hay comentarios



microLIQUID in BIOARABA, a new workshop to expand collaborations

Microfluidic Event in the North of Spain

The 19th of October , BIOARABA – Conference on Research and Innovation(the 17th Conference on Research OSI UNIVERSITY HOSPITAL ARABA / BIOARABA Research Institute, in collaboration with the Campus of Álava of the UPV / EHU) was held in Vitoria / Gasteiz, more precisely in the Palacio Europa, aimed at people who work on investigation and people who are interested in the topic of BIOTECHNOLOGY.

It has been a seminar directed by professionals who work on investigation and the citizens, who take advantage of the investigations that the companies carry out.

That is why, the citizens have had a great importance in this seminar, letting them choose the principal topic of the event, creating a bridge between professional people and stakeholders  that do not know much about the topic, but moreover, are interested on it.


The seminar had two important points. On one hand, there were conferences where professionals take part, which were organized in “Workshops” and everybody give their opinion and experience about the topic.  We worked on “NEW ANALYTICAL TECHNOLOGIES IN HEALTH”, been expertly managed by Arantxa Goicolea  from UPV/EHU.

On the other hand, and as mentioned before, the citizens take part on the annual investigation award ceremony and they are also able to take part in the meeting of “Healthy aging, a health social and technological perspective” where the experts shared their opinion and knowledge about the topic.

One of our team member took part in this workshop talking about “New analytical technologies in health” together with, for example, Carmen Zugaza (Osakidetza),Javier Garaizar (UPV/EHU),   Lourdes Basabe(UPV(EHU), Alberto Gómez (UPV), Carolina Núñez Domingo (UPV) or Raúl Pérez González (I+Med) and Jesica Ruiz Pérez (I+Med). Some of the topics discussed where Clinical analysis, immunological diagnosis or microfluidic systems.





Read More

Microfluidics and Cell Culture: Advantages

Posted By Borja Barredo / Technology Blog / cell culture, microfluidic chip, microfluidics / No hay comentarios

Cell Culture and Microfluidics

Cell Culture and Microfluidics ,a valuable complement to in vivo experiments

Microfluidic Application: Cell Culture

Cell culture studies based on Microfluidics are said to provide a valuable complement to in vivo experiments, because it allows a more controlled manipulation of cellular functions and processes.


Even if obtaining a pure population of primary cells can be a difficult and hard process, it gives many advantages to work with it, such as;

1. Flexibility when designing the device, it gives the opportunity to adapt to the client’s needs.
2. It gives experimental flexibility & control, which means that is possible to control and make different experiments while creating.
3. Moreover, a low number of cells are needed, because microfluidic cell culture devices reduce the cell population to a few hundred cell, or sometimes, even to individual cells. This increases the spatial and temporal resolution for the experiment.
4. Single cell handling and Real-time on chip analysis: This point is related to the previous, one, because microfluidic cell culture includes the ability to more closely mimic a cell’s natural microenvironment, working directly on chip , and moreover, working in real time.
5. Microfluidic cell culture devices also make it possible and reliable to study complex cellular behaviour, such as the relationship between single cell movements and collective cell migration.
6. Related to the real time on chip analysis, this system gives the opportunity and advantages of precise control of experimental conditions.
7. Moreover, microfluidic cell culture is able to incorporate analytical biosensors into the culture platform.






Read More

Microfluidics Application: What is Cell culture?

Posted By Borja Barredo / Technology Blog / cell culture, microfluidic chip, microfluidics / No hay comentarios

Microfluidics and cell culture

Cell culture: the use of cell culture and microfluidics has clear advantages

Microfluidics Application: Cell Culture

CELL CULTURE : As known, a single cell is what builds the human life, and the genetic material of all those cells in the human body hold the secret to inherited diseases, such as cystic fibrosis, Alzheimer or other complex diseases.

Taking this into account, Cell cultures and DNA can be established from blood or small fragments of tissue (biopsies).

In its simplest form of cell culture, it involves the dispersal of cells in an artificial environment composed of nutrient solutions, a suitable surface to support the growth of cells, and ideal conditions of temperature, humidity, and gaseous atmosphere. These systems are needed for aa researcher to measure the response of the cell’s alterations in culture, prospective drugs, the presence or absence of other kind of cells and viruses precisely.

Cell culture, what for?

The mass culture of animal cell lines is fundamental to the manufacture of viral vaccines and many biotechnology products. And the use of cell culture has clear advantages, such us:

  • They allow precise and fine control of the environment: In a culture you can control all environmental factors: Physical-chemical (pH, temperature, osmotic pressure, levels of O2, CO2, surface tension ..) and physiological (hormones, growth factors, cell density, .)
  • Characterization and homogeneity of the sample. Cultured cells from a cell line or a solid line are homogeneous and uniform composition morphology. You can easily obtain a large number of identical replicas, which the serious problem of the inherent heterogeneity of samples associated with the use of experimental animals is exceeded.
  • It means an economic saving in the use of reagents or drugs to study because when done in small volumes, and with a direct access of cells to drug, concentrations required are much lower than in the whole animal.
  • Ethical issues: Biomedical research involves each year the sacrifice of many thousands of animals for experimentation. The cell culture cannot always replace the test ‘in vivo’ but it is a valid alternative in many situations.




Read More

where are we?